Crystal clear insights into how the dynein motor moves.
نویسنده
چکیده
Dyneins are motor proteins that move along microtubules. They have many roles in the cell. They drive the beating of cilia and flagella, move cargos in the cytoplasm and function in the mitotic spindle. Dyneins are large and complex protein machines. Until recently, the way they move was poorly understood. In 2012, two high-resolution crystal structures of the >2500-amino-acid dynein motor domain were published. This Commentary will compare these structures and integrate the findings with other recent studies in order to suggest how dynein works. The dynein motor produces movement in a manner that is distinct from myosin and kinesin, the other cytoskeletal motors. Its powerstroke is produced by ATP-induced remodelling of a protein domain known as the linker. It binds to microtubules through a small domain at the tip of a long stalk. Dynein communicates with the microtubule-binding domain by an unconventional sliding movement of the helices in the stalk coiled-coil. Even the way the two motor domains in a dynein dimer walk processively along the microtubule is unusual.
منابع مشابه
How Dynein Moves Along Microtubules.
Cytoplasmic dynein, a member of the AAA (ATPases Associated with diverse cellular Activities) family of proteins, drives the processive movement of numerous intracellular cargos towards the minus end of microtubules. Here, we summarize the structural and motile properties of dynein and highlight features that distinguish this motor from kinesin-1 and myosin V, two well-studied transport motors....
متن کاملReview: Structure and mechanism of the dynein motor ATPase
Dyneins are multiprotein complexes that move cargo along microtubules in the minus end direction. The largest individual component of the dynein complex is the heavy chain. Its C-terminal 3500 amino-acid residues form the motor domain, which hydrolyses ATP in its ring of AAA+ (ATPases associated with diverse cellular activities) domains to generate the force for movement. The production of forc...
متن کاملCryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated
Cytoplasmic dynein-1 binds dynactin and cargo adaptor proteins to form a transport machine capable of long-distance processive movement along microtubules. However, it is unclear why dynein-1 moves poorly on its own or how it is activated by dynactin. Here, we present a cryoelectron microscopy structure of the complete 1.4-megadalton human dynein-1 complex in an inhibited state known as the phi...
متن کاملThe effect of endurance training on dynein motor protein expression in Wistar male rats sciatic nerves with diabetic neuropathy
Introduction: Most neurodegenerative diseases are associated with the disruption of axonal transport and this might also be related to diabetes-associated disorders affecting the nervous system. Cytoplasmic dynein is a very important motor driving the movement of a wide range of cargoes toward the minus ends of microtubules. The effects of endurance training on dynein motor protein expression i...
متن کاملA structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 126 Pt 3 شماره
صفحات -
تاریخ انتشار 2013